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Time-reversible dissipative attractors in three and four phase-space dimensions
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We establish the dissipative nature of several three- and four-dimensional time-reversible phase-space flows
and study their ergodicity. Three- and four-dimensional generalizations of the equilibrium Nose´-Hoover oscil-
lator provide the simplest robust continuous models for time-reversible nonequilibrium dissipative systems.
Most such systems exhibit discontinuities or periodicities. We have discovered one set of four ordinary
differential equations which is simultaneously robust, time-reversible, dissipative, and ergodic, with solutions
free of any discontinuities and periodicities.@S1063-651X~97!15206-0#

PACS number~s!: 05.45.1b, 02.70.2c, 05.70.Ln, 47.27.Te
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I. INTRODUCTION

Time-reversible computer algorithms, designed to sim
late nonequilibrium dissipative molecular dynamics, beg
to be developed about 25 years ago@1,2#. The Newtonian
atomistic and boundary forces were supplemented with c
straint and driving forces, so as to simulate diffusive, def
mational, and heat-conducting flows. Though in many ca
the resulting nonequilibrium algorithms were tim
reversible, this property was not, at first, stressed. The n
equilibrium simulations evolved in parallel with rapid deve
opments in nonlinear dynamics and deterministic chaos@3#,
but only rarely were connections made, and parallels dra
linking these fields together@4#.

Theoretical analyses of nonequilibrium flows are comp
cated by the fractal nature of the corresponding phase-s
distributions. The apparent paradox that time-reversible m
tion equations can provide dissipative irreversible pha
space flows motivated the study of simple few-body syste
driven from equilibrium but thermally constrained, so as
generate stationary nonequilibrium states. About ten ye
ago these studies revealed the way in which time-revers
equations of motion can lead to dissipative phase-sp
flows @5#. Such flows typically connect a Lyapunov-unstab
multifractal repellor source to a geometrically similar stran
attractor sink. The repellor and attractor are time-rever
images of each other.

The first problem studied, the field-driven regular ‘‘Ga
ton board’’ or ‘‘Lorentz gas,’’ corresponds to the motion of
particle through a regular lattice of scatterers@6–8#. The
phase space describing the collisions of the moving part
with the scatterers is divided into several contiguous regio
Each of these regions represents those trajectories which
a particular pair of nearby scatterers—these can be first,
ond, or third neighbors of each other—in a regular tw
dimensional triangular lattice. For low to moderate fie
strengths, the phase-space distribution is ‘‘ergodic’’@6–8#,
covering the full energy surface, but with a fractal probab
ity density which is everywhere singular. Not only the col
sional surfaces which separate the various scattering reg
551063-651X/97/55~6!/6803~8!/$10.00
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but also the periodic boundaries associated with the latt
are sources of complexity in analyzing the Galton boa
@6,8#.

The one-dimensional ‘‘Galton staircase’’ problem is le
singular @9#. It describes a thermostatted pendulum, driv
by a torsional external fieldE and under the influence o
gravity. The strength of the gravitational field is proportion
to the parameter«:

q̇5p/m; ṗ5E2«sinq2zp; ż5@~p2/mkT!21#/t2.

The thermostat variable,z, plays the roˆle of a control vari-
able. This control variable implements the thermal constra
^p2&5mkT, wherek is Boltzmann’s constant andT is the
temperature.t is a free parameter, the thermostat relaxat
time. Periodic boundaries are used for the pendulum loca
q, with 2p,q,1p. A typical chaotic trajectory repeat
edly leaves and reenters the periodic phase-space cell.
the time reversibility of these equations. At any time a t
jectory going forward in time can be made to trace out
past history, by reversing the signs ofp andz.

For simplicity, it is desirable to avoid subdividing phas
space into separate regions, such as those representin
different types of collisions which can occur in the Loren
gas. It is equally desirable to avoid the geometric complex
associated with the periodic boundary conditions common
both the examples just discussed. Such divisions and per
icities complicate theoretical analyses@8,10#. A relatively
simple problem, which lacks both these complicating fe
tures, is the two-temperature motion of a particle confined
a two-dimensional angle-dependent potential@11#. Unfortu-
nately, that motion occurs in a six-dimensional phase sp
$x,y,px ,py ,zx ,zy%, making visualization out of the question

We know of only one example in the literature of a thre
dimensional continuous flow which is not only time rever
ible and dissipative but also free of singularities and peri
icities. It was discovered by Sprott, though its tim
reversibility was passed over, unnoticed@12#. The simplest
of all the chaotic flows studied by Sprott, albeit nondissip
tive, turned out to be the familiar equilibrium Nose´-Hoover
6803 © 1997 The American Physical Society
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6804 55H. A. POSCH AND WM. G. HOOVER
oscillator@13#. Of the remaining 18 topological types of ch
otic flows, only a single one, Sprott’s case D, is simul
neously time reversible and dissipative:

ẋ52y; ẏ5x1z; ż5xz13y2.

To reverse this flowx andz must be odd functions of time
while y must be even. However, the flow is not particula
robust and has a tendency to diverge if the initial conditio
are chosen far from the origin. For initial conditions close
the origin and with all possible sign combination
$x,y,z%5$60.1,60.1,60.1%, one finds that the combinatio
$222% provides a stable limit cycle, with a period just le
than 20; the combination$122% diverges; the other six
sign combinations do lead to a fractal attractor with an inf
mation dimensionDI52.078. This dimension is much les
than the embedding dimensionD of the space, 3. The rela
tively large difference, 0.922, reflects the relative rarity
convergent solutions of Sprott’s equations, and is not at
typical of thermostatted physical systems. Physical syste
for conditions close to equilibrium at least, typically ha
attractor dimensions close to the embedding dimension
their equilibrium phase space. In view of this delicate co
vergence, Sprott’s equations are not a promising model
physical dissipative systems.

The stimulation provided by a recent workshop and c
ference on time reversibility@14# led us to study three dis
tinct classes of similar dynamical systems which are f
from such complicating singularities, divergence problem
and periodicities. Each of these systems simultaneously
hibits time reversibility and dissipation. We adopt the us
meaning of time reversibility: for any trajectory proceedi
in the positive time direction there exists a reversed tra
tory, obeying exactly the same motion equations, but w
different initial conditions. We call a system ‘‘dissipative
if, from a continuous distribution of initial conditions,
phase-space strange attractor is generated.

In the following three sections we consider a series
nonequilibrium systems based on the robust and w
characterized equilibrium Nose´-Hoover oscillator@13#. We
originally selected this model as the simplest prototypi
example of Nose´’s approach to thermostatted dynamics@15#.
The model is also the field-free small-amplitude limit of t
Galton staircase model mentioned before. The equilibri
Nosé-Hoover oscillator is described by a three-dimensio
phase-space flow, with the coordinateq and momentump
controlled by a time-reversible friction coefficientz:

q̇5p/m; ṗ52kq2zp; ż5@~p2/mkT!21#/t2.

In these equationsm is the particle mass,k is the force
constant, andkT is, as before, the product of Boltzmann
constant and the temperature. It is noteworthy that th
equations of motion preserve a generalized form of Gib
equilibrium canonical phase-space distribution. However,
dividual oscillator trajectories cannot access the comp
distribution because the flow is not ergodic. The phase-sp
distribution is instead partitioned by the flow equations int
single chaotic ‘‘sea,’’ which is threaded through by a cou
able infinity of regular quasiperiodic regions. Each of the
regular regions surrounds a stable periodic orbit in
-
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(q,p,z) space. The Nose´-Hoover oscillator has a Hamil
tonian basis@15#, and its time-averaged motion conserv
occupied phase volume, rather than shrinking onto an att
tor. It is not dissipative, and the time-averaged friction co
ficient z, describing the comoving rate of phase volum
shrinkage, vanishes:^z&50.

All three nonequilibrium generalizations of the Nos´-
Hoover oscillator, which we study in the following, produc
strange attractors in three-or-four-dimensional phase spa
The first uses two spatially localized thermostats, descri
by compact weighting functions$wT(q)%. The other two
generalizations correspond to models which interpolate
tween two different temperatures with a switching functi
of rangeh. The last of the models, perhaps the most pro
ising from the standpoint of analysis, uses control of both
temperature and its fluctuation. The differing properties
the three cases are summarized in Table I.

II. NOSÉ-HOOVER OSCILLATOR WITH SPATIALLY
WEIGHTED THERMOSTATS

Though many-body generalizations of the Nose´-Hoover
approach have been applied to a variety of nonequilibri
flows, the simplest example so far considered involved
six-dimensional phase space@11#. By using two separate
thermostatted regions, in one space dimension, it is poss
to reduce the phase-space dimensionality to four. This g
eralization of the Nose´-Hoover oscillator to a two-
temperature dissipative nonequilibrium model requires t
separate control variables,zC andzH . Two separate weight-
ing functions,wC andwH , describe the spatial and tempor
extents of the thermostatted regions@1#. In the time-
independent case, considered here, the weighting funct
depend only upon the oscillator coordinateq. A convenient
choice for the$wT(q)%, with continuous first and secon
derivatives, is Lucy’s@16# smooth-particle weighting func
tion

wT5~12r T!3~113r T!

for 0,r T,1; r C5uq11u; r H5uq21u,

with TP$C,H%. The temperatures within the cold and h
regions, centered atq521 and q511, respectively, are
imposed byzC andzH , which act with characteristic relax
ation timestC and tH . With the simplest choice for the
relaxation times,tC5tH5t, the equations of motion for the
two-temperature oscillator system are as follows:

TABLE I. Characteristics of three time-reversible dissipati
generalizations of the three-dimensional equilibrium Nose´-Hoover
oscillator model. The embedding dimensionsD are given. The pres-
ence or absence of smooth weight functionsw, finite thermal
smoothing lengthsh, control of the kinetic energy and its squar
and ergodicity, are all indicated by a1 or 2.

Case D w h ^p2& ^p4& Ergodic

I 4 1 2 1 2 2

II 3 2 1 1 2 2

III 4 2 1 1 1 1
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55 6805TIME-REVERSIBLE DISSIPATIVE ATTRACTORS IN . . .
q̇5p/m; ṗ52kq2~wCzC1wHzH!p;

żC5wC@~p2/mkTC!21#/t2;

żH5wH@~p2/mkTH!21#/t2.

Though we have not carried out a comprehensive stud
this four-dimensional flow, we have confirmed that it typ
cally generates a time-reversible dissipative strange attra
over a wide range of conditions. These atttractors are e
more complex than their equilibrium relatives. Within th
attractors are many embedded regions which, in turn, sup
a wide variety of quasiperiodic orbits. This topological com
plexity, in a four-dimensional space, argues against using
spatially weighted thermostatted oscillator as a paradigm
many-body stationary nonequilibrium states.

III. NOSÉ -HOOVER OSCILLATOR WITH
CONTINUOUSLY VARIABLE TEMPERATURE

An even simpler nonequilibrium thermostatted oscilla
results if temperature is taken to be a smooth function of
coordinate,

T5T~q!5T0@11«tanh~q/h!#.

This nonequilibrium system requires only three phase-sp
dimensions if, just as in the equilibrium case, temperatur
controlled by a single friction coefficient:

q̇5p/m; ṗ52kq2zp; ż5@p22mkT~q!#/~mkT0t
2!.

We choose the hyperbolic tangent so as to switch the
duced temperature smoothly from 12«, for (q/h)!0, to
11«, for (q/h)@0. The temperature difference
T1`2T2`[2«T0, the spatial width of the thermal trans
tion regionh, and the relaxation timet are all fixed param-
eters describing the system.

It is interesting to note that applying the concept of
space-dependent temperature to Nose´’s original Hamil-
tonian, or to Dettmann’s recent modification of it, in th
extended phase space,$Q,P,s,Ps%, leads to equations of mo
tion slightly different from those used here. The difference
described in more detail in the Appendix. We choose
equations of this section for our studies, because they ar
obvious and simple generalization of the equilibrium ca
with all the generic properties shown by dissipative ma
body systems: Lyapunov instability, dissipative shrinking
comoving phase volume, and multifractal phase-space d
sity.

The equilibrium state for the thermostatted oscillator c
responds to the special case«50. The corresponding dy
namics, though relatively complex, is only thre
dimensional, and so has been exhaustively explored@13#.
The equilibrium phase space is partitioned into two differ
sorts of regions:~i! a countable infinity of periodic tubula
regions, centered on regular orbits and~ii ! a single unstable
chaotic region in which all the tubes are embedded. T
measures of the two sorts of regions—that is, the total ph
volumes, weighted with Gibbs’ canonical weight,e2H/kT—
are comparable.
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In the nonequilibrium case, it is desirable to reduce t
complexity, as much as is possible, by studying the region
which the chaotic instability typical of many-body systems
maximized. Figure 13 of Ref.@13a# indicates that a maxi-
mum value for the largest Lyapunov exponent,l1, corre-
sponds to a relaxation time,t, of about 0.5. We accordingly
chooset50.5 for our numerical studies. To optimize th
accuracy of our trajectory calculations we use a fourth-or
Runge-Kutta integrator, with reduced time steps of ord
0.005. The expected single-step error for such a time s
0.0055/5!53310214, is about equal to the truncation erro
inherent in double-precision floating point arithmetic. For
few parameter sets we experimented also with quadru
precision, thirty-digit accuracy, and time steps as small
0.0001. Since we always found the same asympt
behavior—a chaotic sea or a limit cycle—as with doub
precision arithmetic, we do not distinguish between the
methods in the following.

The results given in Table II indicate that a gradual tra
sition between the hot and cold oscillator regions tends
promote chaos, with a very small or very large temperat
difference more likely to generate regular quasiperiodic
lutions. Very long runs establish that trajectories with
rangeh52 and a reduced temperature difference 2«50.4
are likely to be asymptotically regular, rather than chao
though they may exhibit a chaotic transient lasting
many millions of time steps. This is demonstrated in Fig
by the Poincare´ map at the planex50, for the para-
meters h52, t50.5, and «50.2, with initial conditions
$q,p,z%5$0,3.015,0%. For the first 380000 time units~76
million time steps! the oscillating particle seems to fill th
chaotic sea randomly, only to settle, finally, on a 20-po
periodic orbit in the Poincare´ plane~indicated by diamonds
in Fig. 1!. These 20 repeating points are stable, to mach
accuracy, with respect to small perturbations. Obviously
whole chaotic sea acts as a ‘‘basin of attraction’’ for the
periodic orbits, with a vanishing maximum Lyapunov exp
nent in flow direction, and two weakly negative exponen
transverse to the flow. Even quadruple-precision arithm
asymptotically leads to the same results.

In the simpler, and perhaps more generally interesting
tionary chaotic cases, the Lyapunov exponents are clos
the corresponding equilibrium values, even in the case
the temperature varies by a factor of 9. The rate of ene
dissipation is determined by the time-averaged thermo
variable,

^z&52~l11l21l3!,

equal to the negative sum of all Lyapunov exponen
Though symmetry would suggest dissipation varying as
square of the temperature difference, for« not too large,
there is really no evidence for such a behavior in the rang
« treated in Table II. In most cases, the convergence of
Lyapunov exponents is slow. Two examples for Poinc´
maps on the planez50 are shown in Figs. 2 and 3. On
peculiarity of these maps is a pair of slightly-curved ga
with vanishing phase-space flux across the Poincare´ plane
nearp561. Points on these curves would be characteriz
by ż50. All Poincarépoints, for whichż,0, are located
between these two curves. All points withż.0 lie outside
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TABLE II. Dependence of the Lyapunov spectrum$l1 ,l2 ,l3% and the time-averaged dissipation^z& on
the rangeh and strength« of the temperature difference for the harmonic oscillator with space-depen
thermostat of Sec. III. The results tabulated here correspond to simulations carried out for a time of
10 million time units, using a time step 0.005. The characteristic timet associated with the temperatur
control variable is 0.50 in every case. The initial condition was chosen as (q,p,z)5(0,4,0). The information
dimensionDI is determined according to Kaplan and Yorke’s conjecture. All numbers are given in
reduced units introduced in Sec. III. The standard deviation for the nonvanishing exponents is ty
60.0005 for a chaotic trajectory, and less than60.0001 for a limit-cycle solution. We applied Benettin
method to obtain all three time-averaged Lyapunov exponents, as is described in Refs.@21–23#.

h « l1 l2 l3 ^z& DI

2.00 0.2 0 20.0022 20.0021 0.0042 1
2.00 0.4 0.0458 0 20.0621 0.0163 2.737
2.00 0.6 0.0401 0 20.0787 0.0387 2.509
2.00 0.8 0 20.0016 20.0015 0.0031 1
1.80 0.2 0 20.0017 20.0017 0.0035 1
1.50 0.2 0.0419 0 20.0476 0.0057 2.880
1.00 0.2 0.0485 0 20.0597 0.0112 2.812
1.00 0.4 0.0508 0 20.0725 0.0217 2.701
1.00 0.6 0.0410 0 20.0730 0.0320 2.561
1.00 0.8 0 20.0066 20.3574 0.3641 1
0.50 0.2 0.0508 0 20.0645 0.0136 2.789
0.50 0.4 0.0176 0 20.0319 0.0144 2.550
0.50 0.6 0 20.0903 20.0974 0.1877 1
0.50 0.8 0 20.1843 20.2470 0.4313 1
0.25 0.2 0 20.0254 20.0255 0.0509 1
0.25 0.4 0 20.0296 20.0296 0.0592 1
0.25 0.6 0.0397 0 20.0473 0.0076 2.840
0.25 0.8 0 20.0172 20.0172 0.0344 1
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them. The existence of a vanishing density of points on s
curves doesnot imply a vanishing phase-space density the
It is only an indication of a vanishing phase-space flux,
product of the density with the phase-space velocity, perp
dicular to the Poincare´ plane. The appearance of these lin
can be avoided altogether by plotting directly the pha

FIG. 1. Poincare´ map for the thermostatted oscillator of Sec. I
whereT(q)5110.2tanh(q/2), and where the thermostat relaxatio
time t has been set equal to 0.5. The Poincare´ plane is defined by
z50. 120 000 points of the transient trajectory are shown. The
points of the asymptotic limit cycle are indicated by diamonds.
numbers are given in the reduced units of Sec. III.
h
.
e
n-
s
-

space density in a narrow section of phase space symm
cally placed around the Poincare´ plane. This will be dis-
cussed in the following section.

We conclude that, although simpler and of lower phas
space dimension than the oscillator with spatially weight
thermostats in Sec. II, the nonequilibrium oscillator with
continuously varying temperature still suffers from excessi

0
l

FIG. 2. Poincare´ map for a chaotic solution of the thermostatte
oscillator of Sec. III, withT(q)5110.6tanh(q/1), with the thermo-
stat relaxation timet set equal to 0.5, and with initial conditions
$q,p,z%5$0,4,0%. All numbers are given in the reduced units o
Sec. III.
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topological complexity, as the examples in the figures, j
discussed, establish.

IV. NOSÉ-HOOVER OSCILLATOR WITH
SIMULTANEOUS CONTROL OF K AND K2

A way to avoid the phase-space complexity of all t
foregoing models was discovered quite recently@17#. Con-
sider controlling both the kinetic energy,K5p2/2m, and its
square, by using two independent control variables. Thi
equivalent to controlling both the second and the fourth m
ments of the momentump. Then, an interesting four
dimensional flow results for the harmonic oscillator su
jected to the same hyperbolic-tangent temperature-switc
function as in the last section:

q̇5p/m; ṗ52kq2zp2jp3/~mkT0!;

ż5@p22mkT~q!#/~mkT0t
2!;

j̇5~p423mkT0p
2!/~mkT0t!2.

An earlier investigation for an equilibrium system, for whic
T(q)5T0 ,«50, suggested that this choice has a mark
structural advantage over the Nose´-Hoover oscillator. It is
ergodic, providing a complete coverage of the phase sp
without stable periodic orbits. We carefully checked the
godicity property, as explained below. In Fig. 4, we sho
two perspective views of a~three-dimensional! Poincare´ sec-
tion for the equilibrium flow. Near-equilibrium flows look
much the same. With the two control variables the motion
ergodic, rather than a complex mixture of chaotic and regu
regions found with a single control.

Let us illustrate the ergodicity in the equilibrium cas
The equilibrium«50 Poincare´ section on the left side o
Fig. 4 was constructed in the usual way, by plotting a ph
point wheneverz changed sign during a Runge-Kutta tim
step. The view shown, along thej axis, shows the sam
disquieting gaps in the density we encountered in the pr

FIG. 3. Poincare´ map for a chaotic solution of the thermostatt
oscillator of Sec. III, withT(q)5110.4tanh(q/0.5), with the ther-
mostat relaxation timet set equal to 0.5, and with initial condition
$q,p,z%5$0,4,0%. All numbers are given in the reduced units
Sec. III.
t
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ous section. The gaps reflect the linear vanishing ofż in the
vicinity of $p561%. Thus these gaps only indicate vanis
ing velocity normal to the Poincare´ plane, not a lack of er-
godicity. To demonstrate this, we constructed a second P
caré section, not shown, which measured density at
Poincare´ plane, as opposed to the flux across it. This sec
section was composed of all the points in a thin slice,
width 0.002, normal to thez axis. We were surprised to find
that the gaps apparently persisted in this view too. But
persistence was an optical illusion, caused by the lower
parent density associated with trajectory line segments
opposed to isolated points. Near$p561% most contribu-
tions to the probability density are in the form of such lin
segments. To show this, a run 100 times longer was a
lyzed, plotting every 100th point within our Poincare´ slice.
This third view is shown on the right side of Fig. 4, an
shows no gaps at all. Finally, we computed the first fo
moments,̂ upu,p2,up3u,p4&, for all points found in the slice
during this longer run, and found agreement, within ab
one part per thousand, with the values calculated analytic
for the ergodic Gaussian distribution,e2p2/2.

The difficulty in visualizing the interiors of three
dimensional Poincare´ sections forced us to devise an ind
pendent convincing numerical test for ergodicity. Such a t
can be based on an ensemble of Lyapunov-exponent ev
ations,$l1%. The exponents are calculated for a dense se
different initial conditions, chosen on a convenient Poinc´
plane. We constructed a regular grid, with 2500 init
points,$0,q,2,0,p,2,z50,j50%, and computed the re
sulting Lyapunov exponents for trajectories composed of 1
million time steps each. If the flow equations are ergodic
would expect the long-time-averaged Lyapunov expone
all to agree. None of the various initial conditions led to
largest Lyapunov exponent very different from the mea
Further, the distribution of the 2500 values ofl1 becomes
roughly Gaussian for trajectory lengths exceeding a few t
of thousands of time steps. Then, as would be expected
an ergodic flow, the halfwidth of the distribution varies,
time increases, as the inverse square root of the numbe
time steps. For 100 million steps, withdt50.0025, the mini-
mum and maximum values forl1 in the set were 0.0654 an

FIG. 4. Two Poincare´ sections for the doubly-thermostatted o
cillator of Sec. IV, with both^p2& and ^p4& controlled. Views of
$q,p,j% at the hyperplanez50, looking down thej axis, are
shown. Flux is shown on the left, illustrating those points cross
the planez50. Density is shown at the right, rather than flux, b
illustrating 1% of those points occupying a narrow slice parallel
the planez50.
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TABLE III. Dependence of the Lyapunov spectrum and dissipation on the rangeh and strength« of the
temperature difference for a harmonic oscillator with control of the kinetic energy and its fluctuation
results tabulated here correspond to simulations carried out for a time of 2 000 000, using a time step o
The characteristic timest associated with the temperature control variables are equal to 0.5 and
indicated. The initial condition was chosen as (q,p,z,j)5(0,4,0,0). We tabulate the full Lyapunov spectru
$l1 ,l2 ,l3 ,l4% below. The sum of all exponentsl11l21l31l452^z13jp2&. All numbers are given in
the reduced units defined in Sec. IV. The standard deviation for the nonvanishing exponents is ty
60.0005 for a chaotic trajectory, and less than60.0001 for a limit-cycle solution. Only fort50.5 the
uncertainty ofl4 is about twice as big. We applied Benettin’s method to obtain all four time-avera
Lyapunov exponents, as is described in Refs.@21–23#. The information dimensionDI , determined according
to Kaplan and Yorke, is also given.

h « l1 l2 l3 l4 ^z13jp2& DI

t50.5

2.00 0.2 0.1571 0 20.0159 20.188 0.046 3.75
2.00 0.4 0.1796 0 20.0451 20.272 0.138 3.49
2.00 0.6 0.1708 0 20.0626 20.357 0.249 3.30
2.00 0.8 0.1701 0 20.0788 20.522 0.431 3.18
1.00 0.2 0.1677 0 20.0247 20.233 0.090 3.61
1.00 0.4 0.1658 0 20.0648 20.317 0.216 3.32
1.00 0.6 0.1626 0 20.0710 20.533 0.441 3.17
1.00 0.8 0.1633 0 20.1271 20.939 0.906 3.03
0.50 0.2 0.1595 0 20.0218 20.245 0.107 3.56
0.50 0.4 0.1730 0 20.0735 20.386 0.286 3.26
0.50 0.6 0.1740 0 20.1086 20.720 0.654 3.09
0.50 0.8 0.1588 0 20.1960 21.165 1.203 2.80
0.25 0.2 0.1576 0 20.0223 20.254 0.118 3.53
0.25 0.4 0.1698 0 20.0833 20.424 0.338 3.20
0.25 0.6 0.1653 0 20.1346 20.721 0.690 3.04
0.25 0.8 0.1689 0 20.2581 21.170 1.259 2.65

t51.0

2.00 0.2 0.0673 0 20.0010 20.0689 0.002 3.97
2.00 0.4 0.0667 0 20.0036 20.0709 0.008 3.89
2.00 0.6 0.0639 0 20.0074 20.0773 0.021 3.73
2.00 0.8 0 20.0018 20.0018 20.0456 0.049 1
1.00 0.2 0.0670 0 20.0015 20.0698 0.004 3.94
1.00 0.4 0.0637 0 20.0043 20.0751 0.016 3.79
1.00 0.6 0.0620 0 20.0109 20.1018 0.051 3.50
1.00 0.8 0 20.0008 20.0008 20.0376 0.039 1
0.50 0.2 0.0665 0 20.0014 20.0704 0.005 3.93
0.50 0.4 0.0620 0 20.0052 20.0793 0.022 3.72
0.50 0.6 0.0638 0 20.0130 20.1325 0.082 3.38
0.50 0.8 0.0601 0 20.0245 20.1931 0.158 3.19
0.25 0.2 0.0677 0 20.0017 20.0738 0.008 3.90
0.25 0.4 0.0628 0 20.0065 20.0869 0.031 3.65
0.25 0.6 0.0641 0 20.0215 20.1773 0.135 3.24
0.25 0.8 0.0615 0 20.0281 20.2630 0.230 3.13
th
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0.0707, respectively. We conclude, with confidence, that
nonequilibrium phase-space distribution for this fou
dimensional nonequilibrium flow is, like the equilibrium on
ergodic. There can be no noticeable isolated cavities in
chaotic sea for such nonequilibrium distributions, at le
sufficiently near to the equilibrium case. Thus this fou
dimensional model is a relatively simple prototype for und
standing many-body irreversible flows, being simultaneou
time-reversible, dissipative, and ergodic. Data shown
e

e
t
-
-
ly
n

Table III, for comparison to those found with a single contr
variable demonstrate the simpler nature of the fo
dimensional model. However, for large temperature diff
ences, «50.8, and a wide transition region,h>1, the
asymptotic solution is not chaotic but a limit cycle, if th
slower of the control mechanisms involving the larger of t
two investigated response times,t51.0, is chosen. The us
of two control variables,z andj, also makes the equations o
motion stiffer than in the case of Sec. III. A reduced tim
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step of 0.001 was required for the simulations leading
Table III.

V. SUMMARY AND CONCLUSION

We have studied four distinct models for time-reversib
dissipative phase-space flows. The last of them, which c
trols two moments of the velocity distribution, is the mo
promising, because the flow is ergodic near equilibrium. T
many three-dimensional and four-dimensional chaotic flo
explored here should prove to be useful guides to the un
standing of the mathematical structure of continuous tim
reversible dissipative many-body systems. Our investigati
suggest that there is a qualitative difference between the
tive simplicity of flows embedded in spaces of four, or mo
dimensions, and the complexity of the three-dimensio
flows. Thus the present work provokes an interesting ma
ematical question: Why is it that stable periodic orbits, a
their accompanying topological complexity, are so mu
rarer in four dimensions than in three? Perhaps the comp
ity of a three-dimensional Poincare´ section plays the sam
rôle for ergodicity as does a three-dimensional embedd
space for nonlinear chaos?

Because maps are analogous to Poincare´ sections, they
have been studied exhaustively@18,19#. It is natural to won-
der whether or not maps can be constructed which have
same characteristics as the flows studied here. Typically
attractor dimensions associated with maps are consider
less than the embedding dimension, with most maps inc
ing both singularities and periodic boundaries. The simp
time-reversible dissipative ergodic map is a two-dimensio
generalized rotated Baker map, as was pointed out to u
Vance@19#. This Baker-map example, like the Galton boa
and many more-complicated time-reversible dissipat
maps @19#, includes both singular surfaces and period
boundaries. It is a worthy goal to seek out maps analogou
the simple dual-control system of Sec. IV.
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APPENDIX

Here we extend the Hamiltonian in Nose´’s original theory
@15#, as well as Carl Dettmann’s more elegant modificati
of it @20#, to describe an oscillator thermostatted by a spa
dependent temperature,T(q)5T0@11«tanh(q/h)#. The two
extended Hamiltonians are

HNosé[HDettmann/s

[P2/~2ms2!1kQ2/21aPs
2/21kT~Q!lns.

Q andP are referred to by Nose´ as ‘‘virtual’’ coordinate and
momentum variables, respectively, whiles andPs represent
his thermostat ‘‘coordinate’’ and its conjugate momentu
respectively. As usual,k and k are respectively the force
constant and Boltzmann’s constant. The parametera can be
expressed in terms of the mean temperatureT0 and relax-
ation timet of the thermostat:

at251/~kT0!.

These two Hamiltonians both yield the same time histor
for the coordinate and the friction coefficient. Nose´’s original
approach@13#, which we do not reproduce here, is to app
‘‘time scaling,’’ dtnew5(1/s)dtold , to the equations of mo-
tion from his Hamiltonian, and then to identify ‘‘real’’ vari-
ablesq andp in terms of the virtual variables as follows:

Q⇒q; P⇒sp5msq̇; Ps⇒~dlns/dt!/a5z/a.

If we eliminatep in favor ofmq̇ the resulting Nose´-Hoover
oscillator equations are

mq̈52kq2mzq̇2k~dT/dq!E
0

t

z~ t8!dt8;

ż5@mq̇22kT~q!#/~kT0t
2!.

Dettmann’s approach is more straightforward. His Ham
tonian leads to exactly the same motion equations provi
that the numerical value of his Hamiltonian is chosen eq
to zero. The equations of motion just given differ from th
equations of motion given in Sec. III only in the term co
taining the temperature derivative,dT/dq. For the equations
of motion given in this appendix, both Nose´’s Hamiltonian,
and Dettmann’s, are constants of the motion. The more
tuitive equations of motion, which we use in Sec. III, do n
have this conservation property.
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