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Time-reversible dissipative attractors in three and four phase-space dimensions
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We establish the dissipative nature of several three- and four-dimensional time-reversible phase-space flows
and study their ergodicity. Three- and four-dimensional generalizations of the equilibriuraHdoser oscil-
lator provide the simplest robust continuous models for time-reversible nonequilibrium dissipative systems.
Most such systems exhibit discontinuities or periodicities. We have discovered one set of four ordinary
differential equations which is simultaneously robust, time-reversible, dissipative, and ergodic, with solutions
free of any discontinuities and periodicitid§1063-651X97)15206-0

PACS numbdps): 05.45+hb, 02.70-c, 05.70.Ln, 47.27.Te

[. INTRODUCTION but also the periodic boundaries associated with the lattice,
are sources of complexity in analyzing the Galton board
Time-reversible computer algorithms, designed to simu{6,8].
late nonequilibrium dissipative molecular dynamics, began The one-dimensional “Galton staircase” problem is less
to be developed about 25 years dgo?]. The Newtonian Singular[9]. It describes a thermostatted pendulum, driven
atomistic and boundary forces were supplemented with corRy & torsional external field& and under the influence of
straint and driving forces, so as to simulate diffusive, defor-gravity. The strength of the gravitational field is proportional
mational, and heat-conducting flows. Though in many caset9 the parametes:
the resulting nonequilibrium algorithms were time- . )
reversible, this property was not, at first, stressed. The non-g=p/m; p=E—esing—{p; {=[(p*/mkT)—1]/7.
equilibrium simulations evolved in parallel with rapid devel-
opments in nonlinear dynamics and deterministic c@ds The thermostat variablé;, plays the Tte of a control vari-
but only rarely were connections made, and parallels drawrgble. This control variable implements the thermal constraint
linking these fields togethg#]. (p?)=mKkT, wherek is Boltzmann’s constant andl is the
Theoretical analyses of nonequilibrium flows are compli-temperaturer is a free parameter, the thermostat relaxation
cated by the fractal nature of the corresponding phase-spatie. Periodic boundaries are used for the pendulum location
distributions. The apparent paradox that time-reversible mog, with —7<<q<+ 7. A typical chaotic trajectory repeat-
tion equations can provide dissipative irreversible phaseedly leaves and reenters the periodic phase-space cell. Note
space flows motivated the study of simple few-body systemshe time reversibility of these equations. At any time a tra-
driven from equilibrium but thermally constrained, so as tojectory going forward in time can be made to trace out its
generate stationary nonequilibrium states. About ten yeargast history, by reversing the signs pfand{.
ago these studies revealed the way in which time-reversible For simplicity, it is desirable to avoid subdividing phase
equations of motion can lead to dissipative phase-spacgpace into separate regions, such as those representing the
flows[5]. Such flows typically connect a Lyapunov-unstabledifferent types of collisions which can occur in the Lorentz
multifractal repellor source to a geometrically similar strangegas. It is equally desirable to avoid the geometric complexity
attractor sink. The repellor and attractor are time-reversedssociated with the periodic boundary conditions common to
images of each other. both the examples just discussed. Such divisions and period-
The first problem studied, the field-driven regular “Gal- icities complicate theoretical analys¢8,10]. A relatively
ton board” or “Lorentz gas,” corresponds to the motion of a simple problem, which lacks both these complicating fea-
particle through a regular lattice of scatter¢fs-8]. The  tures, is the two-temperature motion of a particle confined by
phase space describing the collisions of the moving particla two-dimensional angle-dependent poteritidl]. Unfortu-
with the scatterers is divided into several contiguous regionsnately, that motion occurs in a six-dimensional phase space,
Each of these regions represents those trajectories which link,y,py, Py ,{x ¢y}, making visualization out of the question.
a particular pair of nearby scatterers—these can be first, sec- We know of only one example in the literature of a three-
ond, or third neighbors of each other—in a regular two-dimensional continuous flow which is not only time revers-
dimensional triangular lattice. For low to moderate fieldible and dissipative but also free of singularities and period-
strengths, the phase-space distribution is “ergodi6=8], icities. It was discovered by Sprott, though its time
covering the full energy surface, but with a fractal probabil-reversibility was passed over, unnoticg?]. The simplest
ity density which is everywhere singular. Not only the colli- of all the chaotic flows studied by Sprott, albeit nondissipa-
sional surfaces which separate the various scattering regioriéve, turned out to be the familiar equilibrium Nesm®over
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oscillator[13]. Of the remaining 18 topological types of cha-  TABLE I. Characteristics of three time-reversible dissipative
otic flows, only a single one, Sprott's case D, is simulta-generalizations of the three-dimensional equilibrium Nesever
neously time reversible and dissipative: oscillator model. The embedding dimensi@hsre given. The pres-
ence or absence of smooth weight functions finite thermal
smoothing lengthé, control of the kinetic energy and its square,

X=—V, y=x+z z=xz+3y%
.y ' y and ergodicity, are all indicated by-a or —

To reverse this flowk andz must be odd functions of time,
while y must be even. However, the flow is not particularly

D w h (p?) (p® Ergodic
robust and has a tendency to diverge if the initial conditiong 4 + — + — -

3

4

Case

are chosen far from the origin. For initial conditions close toj) - + + - -
the origin and with all possible sign combinations _ + + + +
{x,y,2}={*0.1,+0.1,=0.1}, one finds that the combination
{———1 provides a stable limit cycle, with a period just less
than 20; the combinatiof+ — —} diverges; the other six (q,p,Z) space. The NosEoover oscillator has a Hamil-
sign combinations do lead to a fractal attractor with an infor-tonian basig/15], and its time-averaged motion conserves
mation dimensiorD,=2.078. This dimension is much less occupied phase volume, rather than shrinking onto an attrac-
than the embedding dimensidh of the space, 3. The rela- tor. It is not dissipative, and the time-averaged friction coef-
tively large difference, 0.922, reflects the relative rarity officient £, describing the comoving rate of phase volume
convergent solutions of Sprott's equations, and is not at alshrinkage, vanishe¢Z)=0.
typical of thermostatted physical systems. Physical systems, All three nonequilibrium generalizations of the Nese
for conditions close to equilibrium at least, typically have Hoover oscillator, which we study in the following, produce
attractor dimensions close to the embedding dimension oftrange attractors in three-or-four-dimensional phase spaces.
their equilibrium phase space. In view of this delicate con-The first uses two spatially localized thermostats, described
vergence, Sprott’s equations are not a promising model fopy compact weighting functiongw+(q)}. The other two
physical dissipative systems. generalizations correspond to models which interpolate be-
The stimulation provided by a recent workshop and contween two different temperatures with a switching function
ference on time reversibility14] led us to study three dis- of rangeh. The last of the models, perhaps the most prom-
tinct classes of similar dynamical systems which are fregsing from the standpoint of analysis, uses control of both the
from such complicating singularities, divergence problemstemperature and its fluctuation. The differing properties of
and periodicities. Each of these systems simultaneously exhe three cases are summarized in Table I.
hibits time reversibility and dissipation. We adopt the usual
meaning of time reversibility: for any trajectory proceeding
in the positive time direction there exists a reversed trajec-
tory, obeying exactly the same motion equations, but with

Il. NOSE-HOOVER OSCILLATOR WITH SPATIALLY
WEIGHTED THERMOSTATS

different initial conditions. We call a system “dissipative”  Though many-body generalizations of the Ndés®over
if, from a continuous distribution of initial conditions, a approach have been applied to a variety of nonequilibrium
phase-space strange attractor is generated. flows, the simplest example so far considered involved a

In the following three sections we consider a series ofsix-dimensional phase spa¢él]. By using two separate
nonequilibrium systems based on the robust and wellthermostatted regions, in one space dimension, it is possible
characterized equilibrium Nogeoover oscillator[13]. We  to reduce the phase-space dimensionality to four. This gen-
originally selected this model as the simplest prototypicaleralization of the Nosé¢loover oscillator to a two-
example of Noss approach to thermostatted dynamii¢5].  temperature dissipative nonequilibrium model requires two
The model is also the field-free small-amplitude limit of the separate control variableggz and¢y,. Two separate weight-
Galton staircase model mentioned before. The equilibriumng functions,wc andw,, , describe the spatial and temporal
NoseHoover oscillator is described by a three-dimensionalextents of the thermostatted regiond]. In the time-
phase-space flow, with the coordinateand momentunp  independent case, considered here, the weighting functions
controlled by a time-reversible friction coefficieit depend only upon the oscillator coordinateA convenient

_ _ _ choice for the{wy(q)}, with continuous first and second
q=p/m; p=-—«kq—{p; =[(p*/mkT)—1]/7°. derivatives, is Lucy’'d16] smooth-particle weighting func-
tion
In these equationsn is the particle massk is the force
constant, ankT is, as before, the product of Boltzmann’s wr=(1-rp)3(1+3r7)
constant and the temperature. It is noteworthy that these
equations of motion preserve a generalized form of Gibbs’ for 0<r;<1; rc=[a+1; ry=[q-1],
equilibrium canonical phase-space distribution. However, in-
dividual oscillator trajectories cannot access the completavith Te{C,H}. The temperatures within the cold and hot
distribution because the flow is not ergodic. The phase-spadegions, centered aj=—1 andq=+1, respectively, are
distribution is instead partitioned by the flow equations into aimposed bylc and ¢y, which act with characteristic relax-
single chaotic “sea,” which is threaded through by a count-ation timesrc and 7. With the simplest choice for the
able infinity of regular quasiperiodic regions. Each of theserelaxation timesy-= 7= 7, the equations of motion for the
regular regions surrounds a stable periodic orbit in thewo-temperature oscillator system are as follows:
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In the nonequilibrium case, it is desirable to reduce this
complexity, as much as is possible, by studying the region in
which the chaotic instability typical of many-body systems is
maximized. Figure 13 of Ref.13q indicates that a maxi-

) ) ) mum value for the largest Lyapunov exponent, corre-
{n=wy[(p*/mkTy) —1]/7°. sponds to a relaxation time, of about 0.5. We accordingly
hooser=0.5 for our numerical studies. To optimize the
ccuracy of our trajectory calculations we use a fourth-order

q=p/m; p=—«q—(Wclc+Wuln)Pp;

{c=wc[(pYmkTe)— 1]/ 7%

Though we have not carried out a comprehensive study o

this four-dimensional flow, we have confirmed that it typi- Runge-Kutta integrator, with reduced time steps of order

cally generates a time-reversible dissipative strange attractef 505, The expected single-step error for such a time step
over a wide range of conditions. These atttractors are eV86.0053./5|=3><10*14 is about equal to the truncation errors '

more complex than their equilibrigm reIaFives. Within the inherent in double-precision floating point arithmetic. For a
attractors are many embedded regions which, in turn, suppo,

” i f ieriodic orbits. Thi logical fow parameter sets we experimented also with quadruple-
a wide variety of quasiperiodic orbits. This topological com- precision, thirty-digit accuracy, and time steps as small as
plexity, in a four-dimensional space, argues against using th

. . . ; .0001. Since we always found the same asymptotic
spatially we|ght(_ad thermostattgd QSC'”ator as a paradigm foE)ehavior—a chaotic sea or a limit cycle—as with double
many-body stationary nonequilibrium states.

precision arithmetic, we do not distinguish between these
, methods in the following.

ll. NOSE -HOOVER OSCILLATOR WITH The results given in Table |l indicate that a gradual tran-
CONTINUOUSLY VARIABLE TEMPERATURE sition between the hot and cold oscillator regions tends to
promote chaos, with a very small or very large temperature

ifference more likely to generate regular quasiperiodic so-

utions. Very long runs establish that trajectories with a
rangeh=2 and a reduced temperature difference=2.4

T=T(q)=To[1+stanig/h)]. are likely to be asympt_ot_ically regu_lar, rath_er than c_:haotic,

though they may exhibit a chaotic transient lasting for

This nonequilibrium system requires only three phase-spac@any millions of time steps. This is demonstrated in Fig. 1

dimensions if, just as in the equilibrium case, temperature ¥y the Poincaremap at the planex=0, for the para-
controlled by a single friction coefficient: metersh=2, r=0.5, ande=0.2, with initial conditions

{q,p,{}={0,3.015,Q. For the first 380000 time unit&’6
g=p/m; p=-«xq—{p; =[p?—mkT(q)]/(MkTy7). million time step$ the oscillating particle seems to fill the

chaotic sea randomly, only to settle, finally, on a 20-point
We choose the hyperbolic tangent so as to switch the reeriodic orbit in the Poincarplane (indicated by diamonds
duced temperature smoothly from-%, for (q/h)<0, to  in Fig. 1). These 20 repeating points are stable, to machine
1+e, for (q/h)>0. The temperature difference, accuracy, with respect to small perturbations. Obviously the
T.w—T_.=2¢eT,, the spatial width of the thermal transi- Whole chaotic sea acts as a “basin of attraction” for these

tion regionh, and the relaxation time are all fixed param- Periodic orbits, with a vanishing maximum Lyapunov expo-

An even simpler nonequilibrium thermostatted oscillator
results if temperature is taken to be a smooth function of th
coordinate,

eters describing the system. nent in flow direction, and two weakly negative exponents
It is interesting to note that applying the concept of afransverse to the flow. Even quadruple-precision arithmetic
space-dependent temperature to N@seriginal Hamil- ~ asymptotically leads to the same results.

tonian, or to Dettmann’s recent modification of it, in the I the simpler, and perhaps more generally interesting sta-
extended phase spa¢@,P,s,P}, leads to equations of mo- tionary chaotic cases, the Lyapunov exponents are close to
tion slightly different from those used here. The difference isthe corresponding equilibrium values, even in the case that
described in more detail in the Appendix. We choose théhe temperature varies by a factor of 9. The rate of energy
equations of this section for our studies, because they are &hssipation is determined by the time-averaged thermostat
obvious and simple generalization of the equilibrium caseYariable,

with all the generic properties shown by dissipative many-

body systems: Lyapunov instability, dissipative shrinking of (== A2t N3),

comoving phase volume, and multifractal phase-space den- .
sity. equal to the negative sum of all Lyapunov exponents.

The equilibrium state for the thermostatted oscillator cor-zhsgrgeh ;y?]rgiter?;W;;Itirseu%?f?;:e?"::'pgggtVt";g/”l?r ZS the
responds to the special case=0. The corresponding dy- quart P ’ o ge,
namics, though relatively complex, is only three- there is really no evidence for such a behavior in the range of
dimens}onal and so has been exhauétively expldtes] & treated in Table II. In most cases, the convergence of the
The equilibrium phase space is partitioned into two diﬁereml_yapunovtﬁxpolnentf OIS slowh TWO. ex;mplezs fo(; ngcare
sorts of regions{i) a countable infinity of periodic tubular maps on the plang= aré shown in FIgs. 2 and . Une
peculiarity of these maps is a pair of slightly-curved gaps

regions, centered on regular orbits &idl a single unstable ™ i ,
chaotic region in which all the tubes are embedded. Thé{\”th vanishing phase-space flux across the Pom@dalee_
arp=*1. Points on these curves would be characterized

measures of the two sorts of regions—that is, the total phas'%e e o
volumes, weighted with Gibbs’ canonical weiglet, H/kT— by ¢=0. All Poincarepoints, for which{<0, are located

are comparable. between these two curves. All points with-0 lie outside



6806 H. A. POSCH AND WM. G. HOOVER 55

TABLE II. Dependence of the Lyapunov spectrdiy ,A,,\ 3} and the time-averaged dissipatigf) on
the rangeh and strengthe of the temperature difference for the harmonic oscillator with space-dependent
thermostat of Sec. Ill. The results tabulated here correspond to simulations carried out for a time of at least
10 million time units, using a time step 0.005. The characteristic tnassociated with the temperature
control variable is 0.50 in every case. The initial condition was chosen,gs{) = (0,4,0). The information
dimensionD, is determined according to Kaplan and Yorke's conjecture. All numbers are given in the
reduced units introduced in Sec. lll. The standard deviation for the nonvanishing exponents is typically
+0.0005 for a chaotic trajectory, and less thaf.0001 for a limit-cycle solution. We applied Benettin’'s
method to obtain all three time-averaged Lyapunov exponents, as is described if2Refd.

h € Ny A2 A3 <§> D,
2.00 0.2 0 —0.0022 —0.0021 0.0042 1
2.00 0.4 0.0458 0 —0.0621 0.0163 2.737
2.00 0.6 0.0401 0 —0.0787 0.0387 2.509
2.00 0.8 0 —0.0016 —0.0015 0.0031 1
1.80 0.2 0 —0.0017 —0.0017 0.0035 1
1.50 0.2 0.0419 0 —0.0476 0.0057 2.880
1.00 0.2 0.0485 0 —0.0597 0.0112 2.812
1.00 0.4 0.0508 0 —0.0725 0.0217 2.701
1.00 0.6 0.0410 0 —0.0730 0.0320 2.561
1.00 0.8 0 —0.0066 —0.3574 0.3641 1
0.50 0.2 0.0508 0 —0.0645 0.0136 2.789
0.50 0.4 0.0176 0 —0.0319 0.0144 2.550
0.50 0.6 0 —0.0903 —0.0974 0.1877 1
0.50 0.8 0 —0.1843 —0.2470 0.4313 1
0.25 0.2 0 —0.0254 —0.0255 0.0509 1
0.25 0.4 0 —0.0296 —0.0296 0.0592 1
0.25 0.6 0.0397 0 —0.0473 0.0076 2.840
0.25 0.8 0 —0.0172 —0.0172 0.0344 1

them. The existence of a vanishing density of points on suckpace density in a narrow section of phase space symmetri-

curves doesiotimply a vanishing phase-space density therecally placed around the Poincamane. This will be dis-

It is only an indication of a vanishing phase-space flux, thecussed in the following section.

product of the density with the phase-space velocity, perpen- We conclude that, although simpler and of lower phase-

dicular to the Poincarplane. The appearance of these linesspace dimension than the oscillator with spatially weighted

can be avoided altogether by plotting directly the phasethermostats in Sec. Il, the nonequilibrium oscillator with a
continuously varying temperature still suffers from excessive

-3 -2 -1 0 1 2 3 4

FIG. 1. Poincarenap for the thermostatted oscillator of Sec. Il
whereT(qg)=1+0.2tanh@/2), and where the thermostat relaxation ~ FIG. 2. Poincarenap for a chaotic solution of the thermostatted
time 7 has been set equal to 0.5. The Poingalame is defined by oscillator of Sec. Ill, withT(q) = 1+ 0.6tanh¢/1), with the thermo-
£=0. 120000 points of the transient trajectory are shown. The 2Gtat relaxation timer set equal to 0.5, and with initial conditions
points of the asymptotic limit cycle are indicated by diamonds. All{qg,p,{}={0,4,3. All numbers are given in the reduced units of
numbers are given in the reduced units of Sec. Ill. Sec. lll.
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FIG. 4. Two Poincareections for the doubly-thermostatted os-
cillator of Sec. IV, with both(p?) and(p*) controlled. Views of
{q,p,£&} at the hyperplangf=0, looking down the¢ axis, are
shown. Flux is shown on the left, illustrating those points crossing
the planef=0. Density is shown at the right, rather than flux, by
illustrating 1% of those points occupying a narrow slice parallel to
the plane=0.

FIG. 3. Poincarenap for a chaotic solution of the thermostatted
oscillator of Sec. Ill, withT(q) =1+ 0.4tanh(/0.5), with the ther-
mostat relaxation time set equal to 0.5, and with initial conditions

{a,p,¢{}={0,4,3. All numbers are given in the reduced units of ) ) L
Sec. Il ous section. The gaps reflect the linear vanishing of the

vicinity of {p==1}. Thus these gaps only indicate vanish-

topological complexity, as the examples in the figures, justnd velocity normal to the Poincarglane, not a lack of er-
discussed, establish. godicity. To demonstrate this, we constructed a second Poin-
care section, not shown, which measured density at the
Poincareplane, as opposed to the flux across it. This second
section was composed of all the points in a thin slice, of
width 0.002, normal to th¢ axis. We were surprised to find

A way to avoid the phase-space complexity of all thethat the gaps apparently persisted in this view too. But the
foregoing models was discovered quite recefifly]. Con-  persistence was an optical illusion, caused by the lower ap-
sider controlling both the kinetic energl{,=p?/2m, and its  parent density associated with trajectory line segments, as
square, by using two independent control variables. This i®pposed to isolated points. Nefp==*1} most contribu-
equivalent to controlling both the second and the fourth motions to the probability density are in the form of such line
ments of the momentunp. Then, an interesting four- segments. To show this, a run 100 times longer was ana-
dimensional flow results for the harmonic oscillator sub-lyzed, plotting every 100th point within our Poincaskce.
jected to the same hyperbolic-tangent temperature-switchinghis third view is shown on the right side of Fig. 4, and

IV. NOSE-HOOVER OSCILLATOR WITH
SIMULTANEOUS CONTROL OF K AND K2

function as in the last section: shows no gaps at all. Finally, we computed the first four
_ . moments,(|p|,p?,|p3|,p*), for all points found in the slice
g=p/m; p=—kq—Ip—£p3(MKTy); during this longer run, and found agreement, within about
one part per thousand, with the values calculated analytically
=[p>—mkT(q)]/(mkTy7); for the ergodic Gaussian distributioa; P*/2.
The difficulty in visualizing the interiors of three-
£=(p*—3mkTop?)/(mkTy7)2. dimensional Poincarsections forced us to devise an inde-

pendent convincing numerical test for ergodicity. Such a test

An earlier investigation for an equilibrium system, for which can be based on an ensemble of Lyapunov-exponent evalu-
T(q)=Ty,e=0, suggested that this choice has a markedations,{\,}. The exponents are calculated for a dense set of
structural advantage over the Nedeover oscillator. It is  different initial conditions, chosen on a convenient Poincare
ergodic, providing a complete coverage of the phase spacplane. We constructed a regular grid, with 2500 initial
without stable periodic orbits. We carefully checked the er-points,{0<q<2,0<p<2,(=0,£=0}, and computed the re-
godicity property, as explained below. In Fig. 4, we showsulting Lyapunov exponents for trajectories composed of 100
two perspective views of éhree-dimensionalPoincaresec-  million time steps each. If the flow equations are ergodic we
tion for the equilibrium flow. Near-equilibrium flows look would expect the long-time-averaged Lyapunov exponents
much the same. With the two control variables the motion isall to agree. None of the various initial conditions led to a
ergodic, rather than a complex mixture of chaotic and regulatargest Lyapunov exponent very different from the mean.
regions found with a single control. Further, the distribution of the 2500 values f becomes

Let us illustrate the ergodicity in the equilibrium case. roughly Gaussian for trajectory lengths exceeding a few tens
The equilibriume=0 Poincaresection on the left side of of thousands of time steps. Then, as would be expected for
Fig. 4 was constructed in the usual way, by plotting a phasan ergodic flow, the halfwidth of the distribution varies, as
point wheneverZ changed sign during a Runge-Kutta time time increases, as the inverse square root of the number of
step. The view shown, along the axis, shows the same time steps. For 100 million steps, wittt=0.0025, the mini-
disquieting gaps in the density we encountered in the previmum and maximum values far, in the set were 0.0654 and
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TABLE lll. Dependence of the Lyapunov spectrum and dissipation on the faragel strengtte of the
temperature difference for a harmonic oscillator with control of the kinetic energy and its fluctuation. The
results tabulated here correspond to simulations carried out for a time of 2000 000, using a time step of 0.001.
The characteristic times associated with the temperature control variables are equal to 0.5 and 1 as
indicated. The initial condition was chosen asf,{,£) =(0,4,0,0). We tabulate the full Lyapunov spectrum
{N1,M2,N3, 4} below. The sum of all exponents +\,+ A3+ ,=—{({+3£p?). All numbers are given in
the reduced units defined in Sec. IV. The standard deviation for the nonvanishing exponents is typically
+0.0005 for a chaotic trajectory, and less tha®.0001 for a limit-cycle solution. Only for=0.5 the
uncertainty of\, is about twice as big. We applied Benettin’s method to obtain all four time-averaged
Lyapunov exponents, as is described in REI8—23. The information dimensioB, , determined according
to Kaplan and Yorke, is also given.

h e A1 Ao N3 N4 (£+3¢p%) D,
7=0.5
2.00 0.2 0.1571 0 —0.0159 —0.188 0.046 3.75
2.00 0.4 0.1796 0 —0.0451 —-0.272 0.138 3.49
2.00 0.6 0.1708 0 —0.0626 —0.357 0.249 3.30
2.00 0.8 0.1701 0 —0.0788 —0.522 0.431 3.18
1.00 0.2 0.1677 0 —0.0247 —0.233 0.090 3.61
1.00 0.4 0.1658 0 —0.0648 —-0.317 0.216 3.32
1.00 0.6 0.1626 0 —0.0710 —0.533 0.441 3.17
1.00 0.8 0.1633 0 —-0.1271 —0.939 0.906 3.03
0.50 0.2 0.1595 0 —0.0218 —0.245 0.107 3.56
0.50 0.4 0.1730 0 —0.0735 —0.386 0.286 3.26
0.50 0.6 0.1740 0 —0.1086 —-0.720 0.654 3.09
0.50 0.8 0.1588 0 —0.1960 —1.165 1.203 2.80
0.25 0.2 0.1576 0 —0.0223 —0.254 0.118 3.53
0.25 0.4 0.1698 0 —0.0833 —0.424 0.338 3.20
0.25 0.6 0.1653 0 —0.1346 -0.721 0.690 3.04
0.25 0.8 0.1689 0 —0.2581 -1.170 1.259 2.65
7=1.0

2.00 0.2 0.0673 0 —0.0010 —0.0689 0.002 3.97
2.00 0.4 0.0667 0 —0.0036 —0.0709 0.008 3.89
2.00 0.6 0.0639 0 —0.0074 —0.0773 0.021 3.73
2.00 0.8 0 —0.0018 —0.0018 —0.0456 0.049 1

1.00 0.2 0.0670 0 —0.0015 —0.0698 0.004 3.94
1.00 0.4 0.0637 0 —0.0043 —0.0751 0.016 3.79
1.00 0.6 0.0620 0 —0.0109 —0.1018 0.051 3.50
1.00 0.8 0 —0.0008 —0.0008 —0.0376 0.039 1

0.50 0.2 0.0665 0 —0.0014 —0.0704 0.005 3.93
0.50 0.4 0.0620 0 —0.0052 —0.0793 0.022 3.72
0.50 0.6 0.0638 0 —0.0130 —0.1325 0.082 3.38
0.50 0.8 0.0601 0 —0.0245 —0.1931 0.158 3.19
0.25 0.2 0.0677 0 —0.0017 —0.0738 0.008 3.90
0.25 0.4 0.0628 0 —0.0065 —0.0869 0.031 3.65
0.25 0.6 0.0641 0 —0.0215 —-0.1773 0.135 3.24
0.25 0.8 0.0615 0 —0.0281 —0.2630 0.230 3.13

0.0707, respectively. We conclude, with confidence, that th&able 111, for comparison to those found with a single control
nonequilibrium phase-space distribution for this four-variable demonstrate the simpler nature of the four-
dimensional nonequilibrium flow is, like the equilibrium one, dimensional model. However, for large temperature differ-
ergodic. There can be no noticeable isolated cavities in thences,e=0.8, and a wide transition regiorh=1, the
chaotic sea for such nonequilibrium distributions, at leastasymptotic solution is not chaotic but a limit cycle, if the
sufficiently near to the equilibrium case. Thus this four-slower of the control mechanisms involving the larger of the
dimensional model is a relatively simple prototype for under-two investigated response timess 1.0, is chosen. The use
standing many-body irreversible flows, being simultaneoushof two control variables andé, also makes the equations of
time-reversible, dissipative, and ergodic. Data shown immotion stiffer than in the case of Sec. Ill. A reduced time
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step of 0.001 was required for the simulations leading to APPENDIX
Table 111

Here we extend the Hamiltonian in Ndéseriginal theory
[15], as well as Carl Dettmann’s more elegant modification
of it [20], to describe an oscillator thermostatted by a space-
V. SUMMARY AND CONCLUSION dependent temperatur&(q) =T,[ 1+ stanh@/h)]. The two

We have studied four distinct models for time-reversible€Xt€nded Hamiltonians are

dissipative phase-space flows. The last of them, which con-
trols two moments of the velocity distribution, is the most
promising, because the flow is ergodic near equilibrium. The Hnose= Hpettmand'S
many three-dimensional and four-dimensional chaotic flows o2 P 2
explored here should prove to be useful guides to the under- =P%(2ms) + kQ*2+ aP5/2+kT(Q)lns.
standing of the mathematical structure of continuous time-
reversible dissipative many-body systems. Our investigations .
suggest that there is a qualitative difference between the rel4 andP are referred to by Nosas “virtual” coordinate and
tive simplicity of flows embedded in spaces of four, or more,Momentum variables, respectively, whieand P, represent
dimensions, and the complexity of the three-dimensionallis thermostat “coordinate” and its conjugate momentum,
flows. Thus the present work provokes an interesting mathi€SPectively. As usualc andk are respectively the force
ematical question: Why is it that stable periodic orbits, andconstant and Boltzmann's constant. The parametean be
their accompanying topological complexity, are so muchex_pres_sed in terms of the mean temperafligeand relax-
rarer in four dimensions than in three? Perhaps the comple>€”ltlon time7 of the thermostat:
ity of a three-dimensional Poincasection plays the same
role for ergodicity as does a three-dimensional embedding
space for nonlinear chaos? ar®=1/(kTo).

Because maps are analogous to Poincaretions, they
have been studied exhaustivély8,19. It is natural to won-

der whether or not maps can be constructed which have thenese two Hamiltonians both yield the same time histories
same characteristics as the flows studied here. Typically thgy the coordinate and the friction coefficient. Nisseriginal
attractor dimensions associated with maps are considerably,roaci{13], which we do not reproduce here, is to apply
!ess than t_he empeddmg dlmgnglon, with most maps.includetime scaling,” dt e, (1/s)dt,q, to the equations of mo-
ing both singularities and periodic boundaries. The simplesfion from his Hamiltonian, and then to identify “real” vari-

time-re\_/ersible dissipative ergodic map is a_two-dimensiona}imesq andp in terms of the virtual variables as follows:
generalized rotated Baker map, as was pointed out to us by

Vance[19]. This Baker-map example, like the Galton board,

and many more-complicated time-reversible dissipative )

maps [19], includes both singular surfaces and periodic =~ Q=Q; P=sp=msq P =(dIns/dt)/a={/a.
boundaries. It is a worthy goal to seek out maps analogous to

the simple dual-control system of Sec. IV.

If we eliminatep in favor of mq the resulting Nos¢{oover
oscillator equations are
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